WAYNE LOCAL SCHOOLS PRECALCULUS PACING GUIDE QUARTER 3

UNIT	STANDARDS	LESSON DAYS	TEXTBOOK CORRELATION
4	F.TF.3 (+) Use special triangles to determine geometrically the values of sine, cosine,	20	Chapter 4 Blitzer
	tangent for $\pi/3$, $\pi/4$ and $\pi/6$, and use the unit circle to express the values of sine,		
	cosines, and tangent for x, π +x, and 2π -x in terms of their values for x, where x is any real number.		
	F.TF.4 (+) Use the unit circle to explain symmetry (odd and even) and periodicity of trigonometric functions.		
	F.TF.6 (+) Understand that restricting a trigonometric function to a domain on which		
	it is always increasing or always decreasing allows its inverse to be constructed.		
5	F.TF.7 (+) Use inverse functions to solve trigonometric equations that arise in	25	Chapter 5 Blitzer
	modeling contexts; evaluate the solutions using technology, and interpret them in terms of the context.		
	F.TF.8 Prove the Pythagorean identity $\sin^2(\theta) + \cos^2(\theta) = 1$ and use it to find $\sin(\theta)$,		
	$cos(\theta)$, or $tan(\theta)$ given $sin(\theta)$, $cos(\theta)$, or $tan(\theta)$ and the quadrant of the angle.		
	F.TF.9 (+) Prove the addition and subtraction formulas for sine, cosine, and tangent and use them to solve problems.		
	F-TF.10. Prove the half angle and double angle identities for sine and cosine and use		
	them to solve problems.		

5 Analytic Trigonometry

MATHEMATICAL PRACTICES

Mathematical Practices

- Make sense of problems and persevere in solving them.
- 2. Reason abstractly and quantitatively.
- Construct viable arguments and critique the reasoning of others.
- 4. Model with mathematics.
- 5. Use appropriate tools strategically.
- 6. Attend to precision.
- 7. Look for and make use of structure.
- Look for and express regularity in repeated reasoning.

I CAN STATEMENTS:

- I can evaluate and graph inverse trigonometric functions.
- I can find compositions of trigonometric functions
- I can find the values of trigonometric functions for any angle.
- I can construct the unit circle
- I can find values of trigonometric functions using the unit circle.
- I can graph tangent and reciprocal trigonometric functions
- I can graph transformations of the sine and cosine function.
- I can use a graphing calculator to graph the sine functions and its inverse.
- I can use sinusoidal functions to solve problems.
- I can graph and examine the periods and sums and differences of sinusoids.
- I can identify and use trig identities to find trig values.
- I can use trig identities to simplify trig expressions.
- I can verify trig identities.
- I can determine whether equations are trig identities.
- I can solve trig equations using trig identities.
- I can use Pythagorean identities to verify and solve trig equations.